مقایسه ژنتیکی سویه های اشریشیاکلی جداسازی شده از موارد عفونت ادراری انسان و کلی باسیلوز طیور در شهرستان سمنان، ایران.

نوع مقاله: میکروبشناسی و ایمنی شناسی

نویسندگان

1 1دانش آموخته دامپزشکی، دانشکده دامپزشکی دانشگاه سمنان، سمنان، ایران

2 2گروه پاتوبیولوژی، دانشکده دامپزشکی دانشگاه سمنان، سمنان، ایران

چکیده

زمینه مطالعه: باکتری اشریشیا کلی گونه پیچیده‌ای است که به طور کلی به دو گروه پاتوتیپ بیماریزای روده‌ای و خارج روده‌ای (ExPEC) تقسیم می‌شود و سویه‌های موجود در گروه بیماریزای خارج روده‌ای بیماری‌های متفاوتی را در میزبان‌های مختلف ایجاد می‌نمایند و ممکن است به علت خصوصیات ژنتیکی مشترک، احتمال انتقال آن‌ها از یک گونه به گونه‌ای دیگر محتمل تر باشد.
هدف: گزارش‌های اخیر در مورد شیوع عفونت‌های ادراری در انسان مشخص نموده این باکتری از منابع دامی به ویژه از طریق مواد غذایی مانند لاشه طیور می‌تواند به انسان منتقل شده، موضعی و تکثیر گردد، لذا هدف از مطالعه حاضر تعیین قرابت ژنتیکی سویه‌های مربوط به این دو میزبان می‌باشد.
روش کار: در مجموع 260 جدایه باکتری اشریشیا کلی از موارد عفونت ادراری در انسان (160 جدایه) و کلی‌باسیلوز طیور (100جدایه) از شهر سمنان جمع‌آوری شدند و گروه‌های فیلوژنی با استفاده از تکنیک Triplex-PCR  و همچنین تعیین ژنوتیپ‌ حدت سویه‌های فوق با استفاده از یک تکنیک Tetraplex-PCR اصلاح شده که در آن ژن‌های hly ،iucD ،sfa/focDE و papEF ردیابی شدند، انجام شد.
نتایج: آنالیز نتایج نشان داد که 77 % جدایه‌های مربوط به عفونت ادراری در گروه‌های B2 و D قرار داشته و در مورد جدایه‌های طیور 66 % آن‌ها متعلق به گروه‌های D و A هستند. آنالیز آماری مشخص نمود که شیوع گروه A در جدایه‌های طیور نسبت به موارد انسانی و شیوع گروه B2 در جدایه‌های انسانی نسبت به طیور به طور معنی‌داری بیشتر می‌باشد . نتایج تعیین ژنوتیپ حدت و آنالیز آن‌ها در دو میزبان مشخص نمود که ژن iucD در جدایه‌های مربوط به طیور نسبت انسان به طور معنی‌داری شیوع بیشتری دارد. همچنین ژن  sfa/focDE در جدایه‌های انسانی  به طور معنی‌داری بیش‌تر از سویه‌های طیور است.
نتیجه گیری نهایی: در مجموع به جز تفاوت‌های معنی‌دار اندکی که مشاهده شد، شباهت‌های ژنتیکی عمده‌ای در جدایه‌های اشریشیا کلی مربوط به عفونت ادراری انسان و کلی‌باسیلوز طیور در منطقه مشاهده شده و احتمالاً این دو میزبان می‌توانند به عنوان مخزن برای یکدیگر مطرح باشند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Some Genetic Determinants in Escherichia coli Isolates From Human Urinary Tract Infection and Avian Colibacillosis in Semnan, Iran

نویسندگان [English]

  • Samaneh Joorablou 1
  • Hamid Estaji 2
  • Maryam Rassouli 2
1 Department of Pathobiology, Faculty of Veterinary Medicine, Semnan University
2 2Department of Pathobiology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
چکیده [English]

BACKGROUND: Escherichia coli is a particularly complex species that is grouped into pathotypes of partly zoonotic intestinal pathogenic E. coli and extraintestinal pathogenic E. coli (ExPEC). Strains belonging to ExPEC are able to cause various clinical signs in hosts and due to similar genetic determinants, these hosts may act as a source of infection for each other.
OBJECTIVES: Recent reports of outbreaks of human urinary tract infections (UTIs) have stimulated interest in the potential that E. coli from animals has to cause human UTIs via the food supply especially poultry meat, so we aimed to assess the genetic relationships between strains from these two hosts.
METHODS: A total  of  260  E. coli  isolates  were  obtained  from human  UTI’s (160 strains) and  poultry colibacillosis cases (100 strains)  and  phylogenetic  grouping  was  done  based  on  the Triplex-PCR  method and virulence genotyping was carried out using a modified Tetraplex-PCR detecting hly, iucD, papEF and sfa/focDE genes.
RESULTS: Statistical analysis of results demonstrated that prevalence of B2 & D phylogroups in human UTI’s (77%) and D & A groups in poultry strains (66%) are higher than others, considerably. Statistical analysis showed that distribution of A phylogroup within poultry isolates versus human and B2 phylogroup within human isolates versus poultry ones were higher, significantly. It was shown that iucD is noticeablymore prevalent in poultry strains rather than human isolates,. Also, sfa/focDE gene was significantly more distributed in human strains than poultry isolates.
CONCLUSIONS: In sum, despite the minor genetic differences between isolates from both hosts, our results showed that there are major genetic similarities in E. coli isolates from human UTI and poultry colibacillosis cases in the region and these two hosts can play an important role as infection source for the other one.  
________________________________________________________________

کلیدواژه‌ها [English]

  • Escherichia coli
  • Phylogroup
  • Virulotype
  • Human UTI
  • Poultry colibacillosis
Adib, N., Ghanbarpour, R., Solatzadeh, H., Alizade, H. (2014). Antibiotic resistance profile and virulence genes of uropathogenic Escherichia coli isolates in relation to phylogeny. Trop Biomed, 31: 17-25.

Agarwal, J., Mishra, B., Srivastava, S., Srivastava, R. (2013). Genotypic characteristics and biofilm formation among Escherichia coli  isolates from Indian women with acute cystitis. Trans R Soc Trop Med Hyg, 107:183-187.

Staji, H., Shahaboddin, E., Kafshdouzan, KH. (2017). Correlation of Escherichia coli Strains Isolated from Wild Bird Feces and Human Urinary Tract Infections from Phylogenetic Point of View. Avicenna J Clin Microbiol Infect, 4: 1-7.

Bingen, E., Picard, B., Brahimi, N., Mathy, S., Desjardins, P., Elion, J., Denamur, E. (1998). Phylogenetic analysis of Escherichia coli  strains causing neonatal meningitis suggests horizontal gene transfer from a predominant pool of highly virulent B2 group strains. J Infec Dis, 177: 642-650. 

Bonadio, M., Meini, M., Spitaleri, P., Gigli, C. (2001). Current microbiological and clinical aspects of urinary tract infections. Eur urol, 40: 439-445.

Carlos, C., Pires, M. M., Stoppe, N. C., Hachich, E. M., Sato, M. I., Gomes, T. A., Amaral, A. L., Ottoboni, L. M. (2010). Escherichia coli  phylogenetic group determination and its application in the identification of the major animal source of fecal contamination. BMC microbiol, 10: 161-171.

Clermont, O., Bonacorsi, S., Bingen, E. (2000). Rapid and simple determination of the Escherichia coli  phylogenetic group. Appl Environ Microbiol, 66: 4555-4558.

Delanghe, J. R., Kouri, T. T., Huber, A. R., Hannemann-Pohl, K., Guder, W. G., Lun, A., Sinha, P., Stamminger, G., Beier, L. (2000). The role of automated urine particle flow cytometry in clinical practice. Clin Chim Acta, 301: 1-18. 

Farajnia, S., Alikhani, M. Y., Ghotaslou, R., Naghili, B., Nakhlband, A. (2009). Causative agents and antimicrobial susceptibilities of urinary tract infections in the northwest of Iran. Int Infect Dis, 13: 140-144. 

Foxman, B. (2002). Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med, 113: 5-13. 

Gao, Q., Wang, X., Xu, H., Xu, Y., Ling, J., Zhang, D., Gao, S., Liu, X. (2012). Roles of iron acquisition systems in virulence of extraintestinal pathogenic Escherichia coli : salmochelin and aerobactin contribute more to virulence than heme in a chicken infection model. BMC microbiol, 12: 143-152. 

Ghanbarpour, R., Oswald, E. (2009). Characteristics and virulence genes of Escherichia coli  isolated from septicemic calves in southeast of Iran. Trop Anim health Prod, 41: 1091-1098. 

Gordon, D. M., Clermont, O., Tolley, H., Denamur, E. (2008). Assigning Escherichia coli strains to phylogenetic groups: multi-locus sequence typing versus the PCR triplex method. Environ Microbiol, 10: 2484-2496. 

Hoberman, A., Wald, E. R. (1997). Urinary tract infections in young febrile children. Pediatr Infect Dis, 16: 11-17.

Johnson, T. J., Kariyawasam, S., Wannemuehler, Y., Mangiamele, P., Johnson, S. J., Doetkott, C., Skyberg, J. A., Lynne, A. M., Johnson, J. R., Nolan, L. K. (2007). The genome sequence of avian pathogenic Escherichia coli  strain O1: K1: H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol, 189: 3228-3236. 

Katouli, M., Vollmerhausen, T. (2010). Population structure of gut Escherichia coli  and its role in development of extra-intestinal infections. Iran J Microbiol, 2: 59-72. 

Manges, A. (2016). Escherichia coli and urinary tract infections: the role of poultry-meat. Clin Microbiol Infect, 22: 122-129. 

Manges, A. R., Smith, S. P., Lau, B. J., Nuval, C. J., Eisenberg, J. N., Dietrich, P. S., Riley, L. W. (2007). Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: a case-control study. Foodborne Pathog Dis, 4: 419-431. 

Mulvey, M. A. (2002). Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol, 4: 257-271. 

Staji, H., Rassouli, M., Jourablou, S. (2019). Comparative virulotyping and phylogenomics of Escherichia coli isolates from urine samples of men and women suffering urinary tract infections. Iran J Basic Med Sci, 22:1-4.

Ochman, H., Lawrence, J. G., Groisman, E. A. (2000). Lateral gene transfer and the nature of bacterial innovation. Nature, 405: 299-304.

Ojeniyi, A. (1989). Direct transmission of Escherichia coli  from poultry to humans. Epidemiol Infect, 103: 513-522.

Oliveira, F., Paludo, K., Arend, L., Farah, S., Pedrosa, F., Souza, E. M., Surek, M., Picheth, G., Fadel-Picheth, C. M. T. (2011). Virulence characteristics and antimicrobial susceptibility of uropathogenic Escherichia coli  strains. Genet Mol Res, 10: 4114-4125. 

Osmundson, T. W., Eyre, C. A., Hayden, K. M., Dhillon, J., Garbelotto, M. M. (2013). Back to basics: an evaluation of NaOH and alternative rapid DNA extraction protocols for DNA barcoding, genotyping, and disease diagnostics from fungal and oomycete samples. Mol Ecol Res, 13: 66-74. 

Palaniappan, R. U., Zhang, Y., Chiu, D., Torres, A., DebRoy, C., Whittam, T. S., Chang, Y.-F. (2006). Differentiation of Escherichia coli  pathotypes by oligonucleotide spotted array. J Clin Microbiol, 44: 1495-1501.

Pupo, G. M., Karaolis, D., Lan, R., Reeves, P. R. (1997). Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli  strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Infect Immun, 65: 2685-2692. 

Rodriguez-Siek, K. E., Giddings, C. W., Doetkott, C., Johnson, T. J., Fakhr, M. K. , Nolan, L. K. (2005). Comparison of Escherichia coli  isolates implicated in human urinary tract infection and avian colibacillosis. Microbiol, 151: 2097-2110. 

Rodriguez-Siek, K. E., Giddings, C. W., Doetkott, C., Johnson, T. J., Nolan, L. K. (2005). Characterizing the APEC pathotype. Vet Res, 36: 241-256. 

Russo, T. A., Johnson, J. R. (2000). Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. J Infect Dis, 181: 1753-1754. 

Russo, T. A., Johnson, J. R. (2003). Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbiol Infect, 5: 449-456. 

Salehi, T. Z., Tonelli, A., Mazza, A., Staji, H., Badagliacca, P., Tamai, I. A., Jamshdi, R., Harel, J., Lelli, R., Masson, L. (2012). Genetic characterization of Escherichia coli  O157: H7 strains isolated from the one-humped camel (Camelus dromedarius) by using microarray DNA technology. Mol Biotech, 51: 283-288. 

Skyberg, J. A., Johnson, T. J., Johnson, J. R., Clabots, C., Logue, C. M., Nolan, L. K. (2006). Acquisition of avian pathogenic Escherichia coli  plasmids by a commensal E. coli isolate enhances its abilities to kill chicken embryos, grow in human urine, and colonize the murine kidney. Infect Immun, 74: 6287-6292. 

Staji, H., Khoshgoftar, J., Vayeghan, A. J., Bejestani, M. R. S. (2016). Phylogenetic grouping and assessment of virulence genotypes, with antibiotic resistance patterns, of Escherichia Coli strains implicated in female urinary tract infections. Int J Enteric Pathog, 4: 1-8.

Staji, H., Tonelli, A., Javaheri-Vayeghan, A., Changizi, E., Salimi-Bejestani, M. R. (2015). Distribution of Shiga toxin genes subtypes in B1 phylotypes of Escherichia coli isolated from calves suffering from diarrhea in Tehran suburb using DNA oligonucleotide arrays. Iran J Microbiol, 7: 191-197. 

Thomas, C. M., Nielsen, K. M. (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol, 3: 711-721.

Van den Bogaard, A., London, N., Driessen, C., Stobberingh, E. (2001). Antibiotic resistance of faecal Escherichia coli  in poultry, poultry farmers and poultry slaughterers. J Ant Chem, 47: 763-771. 

Vincent, C., Boerlin, P., Daignault, D., Dozois, C. M., Dutil, L., Galanakis, C., Reid-Smith, R. J., Tellier, P. P., Tellis, P. A., Ziebell, K., Manges, A. R. (2010). Food reservoir for Escherichia coli  causing urinary tract infections. Emerg Infect Dis, 16: 88-95. 

Zhang, L., Foxman, B., Manning, S. D., Tallman, P., Marrs, C. F. (2000). Molecular epidemiologic approaches to urinary tract infection gene discovery in uropathogenic Escherichia coli. Infect Immun, 68: 2009-2015.