Surveillance study of faecal E. coli isolates producing AmpC and extended spectrum β-lactamases (ESBLs) enzymes in poultry and workers from aviculture around Tehran


1 Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran- Iran

2 Gastroenterology and liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran- Iran


BACKGROUND: AmpC and ESBLs as mediated-plasmid extended spectrum β-lactabases are the main factors of resistance to extended-spectrum cephalosporins in enterobacteriacea especially E. coli and will follow treatment failure, high costs of treatment in human and economic losses in the poultry industry. OBJECTIVES: The purpose of this study was to screen and study the faecal E. coli isolates producing extended spectrum β-lactamases (ESBLs) and AmpC enzymes and related workers. METHODS: A total of 500 cloacal swab samples from broiler chickens and 25 rectal swab samples from workers were collected from five poultry houses around Tehran. All samples were seeded on MacConkey agar and identification of E. coli isolates were performed via biochemical tests. Antibiotic susceptibility was determined against 12 antibiotics using the disk diffusion method as recommended by the clinical and laboratory standard institute (CLSI2012). Ceftazidim / ceftazidim-clavolanic acid and cefoxitin / cefoxitin-EDTA disks were used for the detection of ESBL and AmpC phenotypes, respectively. phonetic analysis of the drug resistances was performed via SPSS software and Chi-square test. ESBL- producing E. coli screened by PCR for the presence of genes encoding beta-lactamases of TEM, CTX-M and SHV.       RESULTS: A total 467 E. coli isolates were isolated from 88.9% of the samples as 92% and 72.7% of isolates presenting MDR phenotype among chickens and workers respectively. ESBL phenotype detected in 5.5% (26) of poultry isolates while, none of the workers isolates have this phenotype. Six isolates carried both of TEM and CTX-M whereas, five and one isolates were detected only for TEM and CTX-M, respectively. Eighty-eight and nine-tenths percent of ESBL E. coli displayed AmpC phenotype. CONCLUSIONS: Since cephalosporins are not used in broilers in Iran, isolation of faecal E. coli isolates producing extended spectrum β-lactamases in broilerchickens can indicate transfer of the resistance genes via plasmids and other mobile genetic elements among Enterobacteriaceae.


Aly, M.A., Essam, T.M., Amin, M.A. (2012) Antibiotic resistance profile of E. coli strains isolated from clinical specimens and food samples in egypt. Int J Microbiol Res. 3: 176-182.
Asai, T., Masani, K., Sato, C., Hiki, M., Usuiz, M., Baba, K., Ozawa, M., Harada, K., Aoki, H., Sawada, T. (2011) Phylogenetic groups and cephalosporin resistance genes of Escherichia coli from diseased food-producing animals in Japan. Acta Vet Scand. 53: 52.
Andreoletti, O., Baggesen, D.L., Bolton, D., Butaye, P., Cook, P., Davies, R., Fernández Escámez, P.S., Griffin, J., Hald, T., Havelaar, A., Koutsoumanis, K., Lindqvist, R., McLauchlin, J., Nesbakken, T., Prieto, M., Ricci, A., Ru, G., Sanaa, M., Simmons, M., Sofos, J., Threlfall, J. (2013) Scientific opinion on carbapenem resistance in food animal ecosystems. EFSA J. 11: 1-70.
Blanc, V., Mesa, R., Saco, M., Lavilla, S., Prats,  G., Miro,  E., Navarro,  F., Cortes,  P., Llagostera,  M. (2006) ESBL- and plasmidic class C beta-lactamase-producing E. coli strains isolated from poultry, pig and rabbit farms. Vet Microbiol. 118: 299-304.
Borjesson, S., Egervarn, M., Lindblad, M., Englund, S. (2013) Frequent occurrence of extended-spectrum beta-lactamase- and transferable ampc beta-lactamase-producing Escherichia coli on domestic chicken meat in Sweden. Appl environ Microbiol. 79: 2463-2466.
Cho, S.H., Lim, Y.S., Kang, Y.H. (2012) Comparison of antimicrobial resistance in Escherichia coli strains isolated from healthy poultry and swine farm workers using antibiotics in Korea. Osong Public Health Res Perspect. 3: 151-155.
Collignon, P., Daniels, R., Grove-White, D. (2012) E. coli superbugs on farms and  foods. Soil Association. 6: 1-82.
Hamidian, M., Tajbakhsh, M., Walther-Rasmussen, J., Zali, M.R. (2009) Emergence of extended-spectrum β-Lactamases in clinical isolates of Salmonella enterica in Tehran, Iran. Jpn J Infect Dis. 62: 368-371.
Hasan, B., Sandegren, L., Melhus, A., Drobni, M., Hernandez, J., Waldenstrom, J., Alam, M., Olsen, B. (2012) Antimicrobial drug-resistant Escherichia coli in wild birds and free-range poultry, Bangladesh. Emerg Infect Dis. 18: 2055-2058.
Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. Clinical and Laboratory Standarts Institute (2012) USA: Wayne, PA.
Iroha, I.R., Esimone, C.O., Neumann, S., Marlinghaus, L., Korte, M., Szabados, F., Gatermann, S., Kaase, M. (2012) First description of Escherichia coli producing CTX-M-15- extended spectrum beta lactamase (ESBL) in out-patients from south eastern Nigeria. Ann Clin Microbiol Antimicrob. 11: 7-11.
Islam, M.J., Sultana, S., Das, K.K., Sharmin, N., Hasan, M.N. (2008) Isolation of plasmid - mediated multidrug resistant Escherichia coli from poultry. Int J Sustain Crop Prod. 3: 46-50.
Khodadadi, A., Nikpiran, H., Bijanzad, P., Moomivand, H. (2013) Comparing the difference of antimicrobial resistance of Escherichia coli between broiler breeder and broiler farms with Colibacillosis in East Azerbaijan province. Eur J Zool Res. 2: 50-54.
Kiiru, J., Kariuki, S., Goddeeris, B.M., Butaye, P. (2012) Analysis of β-lactamase phenotypes and carriage of selected β-lactamase genes among Escherichia coli strains obtained from Kenyan patients during an 18-year period. BMC Microbiol. 1: 10-12.
Miles, T., McLaughlin, W., Brown, P. (2006) Antimicrobial resistance of Escherichia coli isolates from broiler chickens and humans. BMC Vet Res. 2: 1-9.
Mu¨ller, D., Greune, L., Heusipp, G., Karch, H., Fruth, A., Tscha¨pe, H., Schmidt, M.A. (2007) Identification of unconventional intestinal pathogenic Escherichia coli isolates expressing intermediate virulence factor profiles by using a novel single-step multiplex PCR. Appl Environ Microbiol. 73: 3380-3390.
Odonkor, S.T., Ampofo, J.K. (2013) Escherichia coli as an indicator of bacteriological quality of water: an overview. Microbiol Res. 4: 20-35.
Papp-Wallace, K.M., Endimiani, A., Taracila, M.A., Bonomo, R.A. (2011) Carbapenems: past, present, and future. Antimicrob Agents Chemother. 55: 4943-4960.
Peter-Getzlaff, S., Polsfuss, S., Poledica, M., Hombach, M., Giger, J., Bo¨ttger, E.C., Zbinden, R., Bloemberg, G.V. (2011) Detection of ampC beta-lactamase in Escherichia coli: Comparison of three phenotypic confirmation assays and genetic analysis. J Clin Microbiol. 49: 2924-2932.
Peter-Getzlaff, S., Polsfuss, S., Poledica, M., Hombach, M., Giger, J., Böttger, E.C., Zbinden, R., Bloemberg, G.V. (2011) Detection of ampC beta-lactamase in Escherichia coli: Comparison of three phenotypic confirmation assays and genetic analysis. J Clin Microbiol. 49: 2924.
Rahimi, M. (2013) Antibioresistance profile of avian pathogenic Escherichia coli isolates recovered from broiler chicken farms with colibacillosis in Kermanshah province, Iran. Global Vet. 10: 447-452.
Randall, L.P., Clouting, C., Horton, R.A., Coldham, N.G., Wu, G., Clifton-Hadley, F.A., Davies, R.H., Teale, C.J. (2011) Prevalence of Escherichia coli carrying extended-spectrum b-lactamases (CTX-M and TEM-52) from broiler chickens and turkeys in Great Britain between 2006 and 2009. J Antimicrob Chemother. 66: 86-95.
Rawat, D., Nair, D. (2010) Extended-spectrum β-lactamases in gram negative bacteria. J Glob Infect Dis. 2: 263-274.
Saeed, N.M. (2014) Detection of extended spectrum beta-lactamase gene production by E. coli isolated from human and broiler in Sulemania province/ Iraq. J Zankoy Sulaimani. 16: 95-105.
Smet, A., Marte, A., Persoons, D., Jeroen Dewulf, M.H., Catry, B., Herman, L., Haesebrouck, F., Butaye, P. (2008) Diversity of extended-spectrum beta-lactamases and class C beta-lactamases among cloacal Escherichia coli isolates in belgian broiler farms. Antimicrob Agents Chemother. 52: 1238-1243.
Tabatabaei,  M., Marashi,  N., Mokarizade,  A. (2010) Transferable plasmid mediating multi-antibiotic resistance in non-pathogenic Escherichia coli isolates from chicken flocks. Global Vet. 5: 371-375.
Tian, G.B., Wang, H.N., Zhang, A.Y., Zhang, Y., Fan, W.Q., Xu, C.W., Zeng, B., Guan, Z.B., Zou, A.K. (2012) Detection of clinically important b-lactamases in commensal Escherichia coli of human and swine origin in western China. J Med Microbiol. 61: 233-238.
Yang, H., Chen, S., White, D.G., Zhao, S., McDermott, P., Walker, R., Meng, J. (2004) Characterization of multiple-antimicrobial-resistant Escherichia coli isolates from diseased chickens and swine in China. J Clin Microbiol. 42: 3483-3489.
Yuan, L., Liu, J.H., Hu, G.Z., Pan, Y.S., Liu, Z.M., Mo, J., Wei, Y.J. (2009) Molecular characterization of extended-spectrum b-lactamase-producing Escherichia coli isolates from chickens in Henan province, China. J Med Microbiol. 58: 1449-1453.
Zahraei Salehi, T., Farashi Bonab, S. (2006) Antibiotics susceptibility of Escherichia coli strains isolated from chickens with colisepticemia in Tabriz province, Iran. Int J Poult Sci. 5: 677-684.
Zavascki, A.P., Bulitta, J.B., Landersdorfer, C.B. (2013) Combination therapy for carbapenem-resistant gram-negative bacteria. Expert Rev Anti Infect Ther. 11: 1333-1353.