بررسی سمیت نانوذرات نقره سنتز شده با استفاده از عصاره الکلی جلبک دریایی سارگاسوم آنگوستیفولیوم در ماهی کپور معمولی

نویسندگان

1 دانشکده علوم دریایی، دانشگاه دریانوردی و علوم دریایی چابهار، چابهار- ایران

2 گروه علوم درمانگاهی، دانشکده دامپزشکی دانشگاه شهید چمران اهواز، اهواز- ایران

3 گروه علوم پایه، دانشکده دامپزشکی دانشگاه شهید چمران اهواز، اهواز- ایران

4 گروه پاتوبیولوژی، دانشکده دامپزشکی دانشگاه شهید چمران اهواز، اهواز- ایران

چکیده

زمینه مطالعه: استفاده از اصول شیمی سبز در سنتز نانو مواد دارای اهمیت ویژه‌ای در بحث نانوبیوتکنولوژی و زیست پزشکی می‌باشد، بنابراین اخیرا سنتز نانوذرات نقره با استفاده از گیاهان و جلبک‌های دریایی با روش بیولوژیکی به‌دلیل سازگاری این روش با محیط زیست خیلی متداول شده است. هدف: هدف از این مطالعه سنتز زیستی نانوذرات نقره با استفاده از عصاره الکلی جلبک Sargassum angustifoliumو بررسی سمیت آن در ماهی کپور معمولی می‌باشد. روش کار: در این مطالعه سنتز زیستی نانوذرات نقره با استفاده از عصاره الکلی جلبک سارگاسوم با روش خارج سلولی انجام شد. در این روش عصاره‌گیری با استفاده از متانول صورت گرفت، سپس غلظت کشنده نانوذره نقره مذکور بر اساس روش استاندارد O.E.C.D به صورت ساکن (static renewal) و به مدت 96 ساعت در ماهی کپور معمولی مورد بررسی قرار گرفت. نتایج: بر اساس نتایج میکروسکوپ الکترونی عبوری (TEM)،  نانوذرات سنتزشده دارای شکل کروی و با اندازه nm 062/0± 31/42 بودند. نتایج سمیت نشان داد که میزان LC50 در زمان‌های 24، 48، 72 و 96 ساعت بعد از مجاورت ماهیان با نانوذرات نقره سنتز شده به‌ترتیب  mg/l 004/0 ± 9۱/77، 012/0 ± 56/50، 007/0 ± 01/29 و 019/0 ± 73/9 و میزان حداکثر غلظت مجاز و  LOEC، به ترتیب mg/l 97/0 و 5/2، محاسبه شد. نتیجهگیری نهایی: آنالیزهای مربوط به مشخصه‌یابی و تعیین ویژگی‌های نانوذرات نشان دهنده تأیید سنتز نانوذرات نقره و احیاء یون‌های نقره توسط عصاره الکی جلبک سارگاسوم می‌باشد. طبق نتایج به دست آمده از تست سمیت، میزان تلفات در ماهی کپور معمولی با افزایش غلظت و افزایش زمان مجاورت روند افزایشی نشان داد که نشان دهنده سمی بودن این ماده در غلظت‌های بالا برای ماهی کپور معمولی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Toxicity study of silver nanoparticles synthesized using seaweed Sargassum angustifolium in common carp, Cyprinus carpio

نویسندگان [English]

  • Seraj Bita 1
  • Mehrzad Mesbah 2
  • Ali Shahryari 3
  • Masoud Ghorbaanpoor Najafabadi 4
1 Department of Fisheries, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar- Iran
2 Department of Clinical Sciences, Faculty of Veterinary, Shahid Chamran University of Ahvaz, Ahvaz- Iran
3 Department of Basic Sciences, Faculty of Veterinary, Shahid Chamran University of Ahvaz, Ahvaz- Iran
4 Department of Pathobiology, Faculty of Veterinary, Shahid Chamran University of Ahvaz, Ahvaz- Iran
چکیده [English]

BACKGROUND: Application of green chemistry to the synthesis of nanomaterials is of vital importance in medicinal and technological aspects. Recently, synthesis of silver nanoparticles using plants and marine macro algae to adapt this approach to the environment, has become  more popular. Objectives: The purpose of this study is biological synthesis of silver nanoparticles using seaweed, Sargassum angustifolium, and determining its toxicity in common carp. Methods: First, synthesis of silver nanoparticles using Sargassum algae was conducted and then acute toxicity of these silver nanoparticles was investigated at static renewal condition during 96 hours in common carp according to standard methods (1998) OECD. Results: TEM analysis showed that the average size of the bionanoparticles was found to be 32.54 nm and spherical in shape. The toxicity results showed that the LC50 at 24, 48, 72 and 96-h after exposure was 79.54 ± 0.007, 52.17 ± 0.006, 30.62 ± 0.008 and 11.34 ± 0.016 mg/l respectively. Conclusions: Analysis related to the characterization of the properties of silver nanoparticles proves bioreduction of silver ions by sargassum seaweed extract. According to the results the mortality rates of common carp showed an increasing trend with increasing concentration and exposure time, which indicates the toxicity of this substance in high concentration for common carp.

کلیدواژه‌ها [English]

  • biosynthesis
  • Common carp
  • Sargassum angustifolium seaweed
  • Silver nanoparticles
  • Toxicity
 

Alishahi, M., Mesbah, M., Ghorbanpoor, M. (2011) Toxicity study of silver nanoparticles in four fish species. Iran J Vet Res. 7: 36-41.

Asharani, P.V., Wu, Y.L., Gong, Z., Valiyaveettil, S. (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 19: 1-8.

Balantrapu, K., Goia, D. (2009) Silver nanoparticles for printable electronics and biological applications. J Mater Res. 24: 2828-2836.

Bilberg, K., Hovgaard, M.B., Besenbacher, F.,  Baatrup, E. (2012) In Vivo Toxicity of Silver Nanoparticles and Silver Ions in Zebrafish (Danio rerio ). J Toxicol. 1: 1-9.

Bilberg, K., Malte, H., Wang, T., Baatrup, E. (2010) Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol. 96: 159-165.

Chae, Y.J., Pham, C.H., Lee, J., Bae, E., Yi, J., Gu, M.B. (2009) Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol. 94: 320-327.

Choi, J.E., Kim, S., Ahn, J.H., Youn, P., Kang, J. S., Park, K., Yi, J., Ryu, D.Y. (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol. 100: 151-9.

Monfared, A.L., Soltani, S. (2013) Effects of silver nanoparticles administration on the liver of rainbow trout (Oncorhynchus mykiss): histological and biochemical studies. EUR J Exp Biol. 3: 285-289.

Griffitt, R.J., Hyndman, K., Denslow, N.D, Barber, D.S. (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci. 107: 404-415.

Griffitt, R.J., Luo, J., Gao, J., Bonzongo, J.C., Barber, D.S. (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem. 27: 1972-1978.

Hedayati, A., Shaluei, F., Jahanbakhshi, A. (2012) Comparison of Toxicity Responses by Water Exposure to Silver Nanoparticles and Silver Salt in Common Carp (Cyprinus carpio). Global Vet. 8: 179-184.

Kahru, A., Dubourguier, H.C. (2010) From ecotoxicology to nanoecotoxicology. Toxicol. 269: 105-119.

Jegadeeswaran, P., Shivaraj, R., Venckatesh, R. (2012) Green synthesis of silver nanoparticles from extract of Padina tatrastromatica laef. Dig J Nanomater Biostruct. 7: 991-998.

Johari, S.A., Kalbassi, M.R., Soltani, M., Yu, I.J. (2013) Toxicity comparison of colloidal silver nanoparticles in various life stages of rainbow trout (Oncorhynchus mykiss). Iran J  Fish Sci. 12: 76 -95.

Kumar, P., Senthamil Selvi, S., Lakshmi Prabha, A., Prem Kumar, K., Ganeshkumar, R.S., Govindaraju, M. (2012) Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its antibacterial activity. Nano Biomed Eng. 4: 2-16.

Laban, G., Nies, L.F., Turco, R.F., Bickham, J.W., Sepulveda, M.S. (2010) The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotox. 19: 185-195.

Li, H., Zhang, J., Wang, T., Luo, W., Zhou, Q., Jiang, G. (2008) Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: A comparison with sodium selenite. Aquat Toxicol. 89: 251-256.

Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., Zhang, Q. (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem. 9: 852-858.

Luoma, S.N., Rainbow, P.S. (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol. 39: 1921-1931.

Mansuya, P., Aruna, P., Sridhar, S., Kumar, J.S., Babu, S. (2010) Antibacterial activity and qualitative phytochemical analysis of selected seaweeds from Gulf of Mannar Region. J Exp Sci. 1: 23-26.

Mayer, G.D., Leach, A., Kling, P., Olsson, P.E., Hogstrand, C. (2003) Activation of the rainbow trout metallothionein—a promoter by silver and zinc. J Comp Biochem Physiol Part B Biochem Mol Biol. 134: 181-188.

Naddy, R.B., Mcnerney, G.R., Gorsuch, J.W., Bell, R.A., Kramer, J.R., Wu, K.B., Paquin,P.R. (2011) The effect of food on the acute toxicity of silver nitrate to four freshwater test species and acute-to-chronic ratios. Ecotox. 20: 2019-2029.

Nithya, R., Ragunathan, R. (2009) Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Dig J Nanomater Biostruct. 4: 623-629.

OECD. (1998) Guidelines for the Testing of Chemicals. Section 2: Effects on Biotic Systems Test Test Guideline No 212: Fish, Short-term Toxicity Test on Embryo and Sac-Fry Stages. OECD, Paris, France.

Patakfalvi, R., Dekany, I. (2010) Preparation of silver nano-particles in liquid crystalline systems. Colloid Polym Sci. 280: 461-470.

Handy, R.D., Owen, R., Valsami-Jones, E. (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicol. 17: 315-325.

Robert, J., Griffitt, Y., Nancy, J., Brown-Peterson, Y., Daniel, A., Savinz, C., Steve, M., Idrissa, B., Ryan, R.A., Marius, B. (2012) Effect of chronic nanoparticle silver exposure to adult and juvenile sheepshead minnow (Cyprinodon variegatus). Environ Toxicol Chem. 31: 160-167.

Shahbazzadeh, D. A., Ahari. H. B., Rahimi. N. M., Dastmalchi. F., Soltani, M. (2009) The effects of Nanosilver on survival percentage of rainbow trout (Oncorhynchus mykiss). Pakistan J of Nutr. 8: 1178-1180.

Sharifpoor, E., Soltani, M., Javadi, M. (2003) Determination LC50 and damages caused by pesticide Endosulfan in Beluga juvenile. Iran J Fish Sci. 12: 69-84.

Singaravelu, G., Arockiamary, J.S., Ganesh Kumar, V., Govindaraju, K. (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces. 57: 97-101.

Soltani, M., Esfandiary, M., Sajadi, M.M., Khazraeenia, S., Bahonar, A. R., Ahari, H. (2011) Effect of nanosilver particles on hatchability of rainbow trout (Oncorhynchus mykiss) egg and survival of the produced larvae Iran J Fish Sci. 10: 167-176.

Song, K.C., Lee, S.M., Park, T.S., Lee, B.S. (2009) Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J. Chem. Eng. 26: 153-155.

Toolabi, A., Zare, M.R., Rahmani, A., Asadi, A., Sarkhosh, M., Hosseinzadeh, A., Abedinezhad, M. (2013) Compare and determine the potential toxicity of nanoparticles Zno using four common bacteria in sewage sludge. J North Khorasan Uni Medical Sci. 5: 397- 403.

Menrad, A., Drobne, D., Jemec, A. (2011). Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut. 159: 677-684.

Tripathi, R.M., Saxena, A., Gupta, N., Kapoor, H., Singh, R.P. (2010) Biological synthesis of silver nanoparticles by using Onion (Allium Cepa) extract and their antibacterial activity. Digest J Nanomat Biostruct. 5: 323-330.

Vedpriya, A. (2010) Living Systems: eco-friendly nanofactories. Dig J. Nanomater Bios. 5: 9-21.

Walker, P.A., Kille, P., Hurley, A., Bury, N.R., Hogstrand, C. (2008) An in vitro method to assess toxicity of waterborne metals to fish. Toxicol. Appl Pharmacol. 230: 67-77.

Wu, Y., Zhou, Q. (2013) Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environ Toxicol Chem. 32: 165-173.

Yeo, M.K., Kang, M. (2008) Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull K Chem Soc. 29: 1179-1184.